Embeddings & Similarity
Generate vector embeddings from text and compute similarity between them. Embeddings are auto-configured from environment variables (JINA_API_KEY, VOYAGE_API_KEY, or COHERE_API_KEY).
Generating Embeddings
llm/embed
Generate an embedding for a string or a list of strings. Returns a bytevector containing densely-packed f64 values in little-endian format. This representation is 2× more memory efficient and 4× faster for similarity computations compared to a list of floats.
;; Single embedding (returns a bytevector)
(define v1 (llm/embed "hello world"))
;; Batch embeddings
(llm/embed ["cat" "dog" "fish"]) ; => list of bytevectorsEmbedding Accessors
embedding/length
Returns the number of dimensions (f64 elements) in an embedding bytevector.
(define v (llm/embed "hello"))
(embedding/length v) ; => 1024 (depends on provider)embedding/ref
Access a specific dimension by index.
(define v (llm/embed "hello"))
(embedding/ref v 0) ; => 0.0123 (first dimension)embedding/->list
Convert an embedding bytevector to a list of floats (useful for interop).
(define v (llm/embed "hello"))
(embedding/->list v) ; => (0.0123 -0.0456 ...)embedding/list->embedding
Convert a list of numbers to an embedding bytevector.
(define v (embedding/list->embedding '(0.1 0.2 0.3)))
(embedding/length v) ; => 3Computing Similarity
llm/similarity
Compute cosine similarity between two embedding vectors. Returns a value between -1.0 and 1.0. Accepts both bytevectors (fast path) and lists of floats (backward compatible).
(define v1 (llm/embed "hello world"))
(define v2 (llm/embed "hi there"))
(llm/similarity v1 v2) ; => 0.87 (cosine similarity)
;; Also works with plain lists
(llm/similarity '(0.1 0.2 0.3) '(0.4 0.5 0.6))Supported Embedding Providers
| Provider | Env Variable |
|---|---|
| Jina | JINA_API_KEY |
| Voyage | VOYAGE_API_KEY |
| Cohere | COHERE_API_KEY |
| OpenAI | OPENAI_API_KEY |
See Provider Management for the full provider capability table.